5,857 research outputs found

    Foreword

    Get PDF

    Foreword

    Get PDF

    Omnidirectional acceleration device Patent

    Get PDF
    Omnidirectional liquid filled accelerometer design with liquid and housing temperature compensatio

    Hydrodynamic Simulations of Oscillating Shock Waves in a Sub-Keplerian Accretion Flow Around Black Holes

    Get PDF
    We study the accretion processes on a black hole by numerical simulation. We use a grid based finite difference code for this purpose. We scan the parameter space spanned by the specific energy and the angular momentum and compare the time-dependent solutions with those obtained from theoretical considerations. We found several important results (a) The time dependent flow behaves close to a constant height model flow in the pre-shock region and a flow with vertical equilibrium in the post-shock region. (c) The infall time scale in the post-shock region is several times higher than the free-fall time scale. (b) There are two discontinuities in the flow, one being just outside of the inner sonic point. Turbulence plays a major role in determining the locations of these discontinuities. (d) The two discontinuities oscillate with two different frequencies and behave as a coupled harmonic oscillator. A Fourier analysis of the variation of the outer shock location indicates higher power at the lower frequency and lower power at the higher frequency. The opposite is true when the analysis of the inner shock is made. These behaviours will have implications in the spectral and timing properties of black hole candidates.Comment: 19 pages, 13 figures, 1 Table MNRAS (In press

    Saturation of Magnetorotational Instability through Magnetic Field Generation

    Full text link
    The saturation mechanism of Magneto-Rotational Instability (MRI) is examined through analytical quasilinear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the alpha effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.Comment: 9 pages, 10 figures to appear in ApJ, Jun 2009, 10 v69

    Medical education on fitness to drive : a survey of all UK medical schools

    Get PDF
    Aim: To identify the extent to which medical aspects of fitness to drive (FTD) are taught within UK medical schools. Methods: A survey of all 32 UK medical schools. In-depth interviews with a range of staff at two medical schools; telephone survey of 30 schools. Results: Two thirds of schools reported specific teaching on medical aspects of FTD but few covered it in any depth or in relation to specific medical conditions. Only one school taught FTD in relation to elderly medicine. FTD was an examination topic at only 12 schools. Conclusion: Teaching on FTD is inconsistent across UK medical schools. Many new doctors will graduate with limited knowledge of medical aspects of FTD

    Magnetically Driven Accretion in the Kerr Metric III: Unbound Outflows

    Full text link
    We have carried out fully relativistic numerical simulations of accretion disks in the Kerr metric. In this paper we focus on the unbound outflows that emerge self-consistently from the accretion flow. These outflows are found in the axial funnel region and consist of two components: a hot, fast, tenuous outflow in the axial funnel proper, and a colder, slower, denser jet along the funnel wall. Although a rotating black hole is not required to produce these unbound outflows, their strength is enhanced by black hole spin. The funnel-wall jet is excluded from the axial funnel due to elevated angular momentum, and is also pressure-confined by a magnetized corona. The tenuous funnel outflow accounts for a significant fraction of the energy transported to large distances in the higher-spin simulations. We compare the outflows observed in our simulations with those seen in other simulations.Comment: 33 pages, 8 figures, ApJ submitte

    Passive broadband full Stokes polarimeter using a Fresnel cone

    Get PDF
    Light's polarisation contains information about its source and interactions, from distant stars to biological samples. Polarimeters can recover this information, but reliance on birefringent or rotating optical elements limits their wavelength range and stability. Here we present a static, single-shot polarimeter based on a Fresnel cone - the direct spatial analogue to the popular rotating quarter-wave plate approach. We measure the average angular accuracy to be 2.9 (3.6) degrees for elliptical(linear) polarisation states across the visible spectrum, with the degree of polarisation determined to within 0.12(0.08). Our broadband full Stokes polarimeter is robust, cost-effective, and could find applications in hyper-spectral polarimetry and scanning microscopy.Comment: 6 Pages, 4 Figure
    • ā€¦
    corecore